BAUMAN MOSCOW STATE TECHNICAL UNIVERSITY SEC "Photonics and IR-techology", Laboratory "Terahertz technologies" (TeraTech Lab) Faculty "Fundamental sciences", Department "Physics"

Interpolation method for pair correlations in classical crystals

Stanislav O. Yurchenko[∗] , Nikita P. Kryuchkov

 ϵ teratech ru ϵ

[∗]Head of TeraTech Lab, Leading researcher, PhD in Physics, Ass. Prof., Dep. "Physics"

School "Problems of solid state and high-pressure physics", Tuapse September 16-26, 2016

キーイ ヨード

 $($ \Box \rightarrow $($ \Box \rightarrow

TeraTech Lab \langle teratech.ru \rangle

TEPAFEPLIOBAS Лаборатория Публикации Сотрудники Блог Контакты **TEXHWKA**

English

Физика конденсированного состояния

Физика конденсированного состояния - богатейшая область современной физики, важная не только с фундаментальной, но и с прикладной точки зрения. Исследования закономерностей поведения конденсированных сред являют собой основу для технологий управления свойствами веществ, технологий создания новых материалов, а также для создания элементной базы нового поколения в приборостроении.

Оптические сильно-коррелированные системы и методология спектроскопических исследований

Развитие технологий управления светом - актуальная задача современной физики и техники. В последнее время большое внимание в этом направлении привлекают фотонные кристаллы и метаматериалы - среды с периодической в пространстве комплексиой дизлектрической и магнитной проинцаемостью. Поведение фотонов в таких средкх с дальними корреляциями принципиально отличается от обычных однородных сред, что приводит к целому комплексу новых явлений: запрешенным зонам, локализации света и т.д.

ТГц изображающие системы и взаимодействие излучения со структурированными средами

Изобознающие системы, работающие в терагерцовом диапазоне электромагнитного излучения, имеют огромную прикладию ценность; они могут использоваться для систем безопасности жизнедеятельности, а биомедицинских приложениях, для технологического и эксплуатационного контроля полимерных конструкций. Для создания таких систем необходимо знать особенности распространения ТГц изпучения в различных средах, в т.ч., локально упорядоченных.

S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 2 / 23

 090

- The general motivation
- Pair correlations and the shortest graphs in classical crystals
- Three-body correlations at large distances
- Thermodynamical properties of simple crystals
- Account of anharmonicity effects
- Phase transitions
- Conclusion and related problems

4 0 8

 Ω

Classical gases, fluids, and crystals

Usually, to estimate the interaction rate in system of particles, coupling parameter is employed:

$$
\Gamma \simeq \frac{\langle U \rangle}{T} = \frac{\text{Interaction energy}}{\text{Kinetic energy}}
$$

Then, we have the following different situations:

 $\bullet \Gamma \leq 1$ — Gases: Mayer's theory for imperfect gases (1937) – The First-Principle Theory \bullet 10² \gtrsim Γ \gtrsim 1 — Fluids:

BBGKY (1948), Ornstein-Zernike equation for fluids (1914)

Frenkel's approaches (1947)

Density-Functional Theory (1927)

 $\bullet \Gamma \geq 10^2$ — Crystals:

Density-Functional Theory (1927)

Pair correlation function can be determined in crystals as

$$
g(\mathbf{r}) = \frac{V}{N^2} \left\langle \sum_{\alpha,\beta,\alpha \neq \beta} \delta(\mathbf{r} + \mathbf{r}_{\alpha} - \mathbf{r}_{\beta}) \right\rangle = \frac{V}{N} \sum_{\alpha} p_{\alpha}(\mathbf{r} - \mathbf{r}_{\alpha}),
$$

where V, N stand for volume and number of particle in the system, $\delta(\mathbf{r})$ is Dirac delta-function, and $\langle \ldots \rangle$ means canonical ensemble averaging, summation is over all the nodes α .

It is amazingly, but the problem of pair correlations in crystals has not been solved complementary for a very long time! イロメ イ母メ イヨメ イヨメ 一番

S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 4 / 23

 200

Fundamental problem of condensed matter physics:

Prediction of structure and properties of condensed systems for given thermodynamic conditions, employing only the interaction potentials between the particles.

If we know pair correlation functions in classical crystals,

- Thermodynamics of the systems can be obtained.
- The solution is important for broad range of systems: atomic, molecular, and complex crystals – in elemental and molecular crystals, in complex media – dusty plasmas, colloidal suspensions, polyelectrolyte ionic microgels, etc.
- Predicting theory of liquid-solid and solid-solid phase transitions can be proposed.

dynamic (MD) simulations, dusty plasmas and colloidal crystals allow to perform particle-resolved studies of generic phenomena. The panels demonstrate typical crystals observed in [t](#page-0-0)[he](#page-22-0) [me](#page-0-0)[dia](#page-22-0)[.](#page-0-0) Ω

The shortest graphs in crystals

The shortest graphs define the functions $p_{\alpha}(\mathbf{r})$ by the corresponding convolutions. In the first approximation, the pair correlations can be estimated as

$$
g(\mathbf{r}) = \frac{1}{n} \sum_{\alpha} \frac{1}{(\sigma \sqrt{2\pi n_{\alpha}})^3} \exp\left(-\frac{(\mathbf{r} - \mathbf{r}_{\alpha})^2}{2n_{\alpha}\sigma^2}\right), \qquad \sigma^2 = \frac{2T}{m\Omega_E^2}, \quad \Omega_E^2 = \frac{1}{3m} \sum_{\alpha} \Delta \varphi|_{\mathbf{r} = \mathbf{r}_{\alpha}},
$$

where n_{α} is the number of steps in the corresponding shortest graph to node α .

S.O. Yurchenko. JCP 140, 134502 (2014)

S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 6 / 23

4 0 8

 $2Q$

$g(r)$ in Lennard-Jones and Yukawa crystals

Numerical $g(r)$ function (red, MD) and theoretically predicted by the SG method (blue). **Lennard-Jones HCP lattice** (top row): Temperature is (from left to right): $T/\epsilon = 0.1, 1, 1.55$ **Yukawa BCC lattice** (bottom row): Temperature is (from left to right): $T/\epsilon = (1.0, 4.5, 8.5) \times 10^{-3}$

S.O. Yurchenko. JCP 140, 134502 (2014)

Account of three-body correlations at large distances

In the harmonic approximation, individual peaks are described by the Gaussian functions:

$$
p_{\alpha}(\mathbf{r}) \propto \exp \left[-\frac{(\mathbf{e}_{\alpha} \cdot \mathbf{r})^2}{2\sigma_{\parallel \alpha}^2}\right] \exp \left[-\frac{\mathbf{r}^2 - (\mathbf{e}_{\alpha} \cdot \mathbf{r})^2}{2\sigma_{\perp \alpha}^2}\right],
$$

where $\sigma_{\parallel \alpha}^2$ and $\sigma_{\perp \alpha}^2$ are the longitudinal and transverse MSDs, respectively, and $\mathbf{e}_{\alpha} = \mathbf{r}_{\alpha}/|\mathbf{r}_{\alpha}|$ is the unit vector. At large distances, $\sigma_{\parallel \alpha}^2 \simeq \sigma_{\perp \alpha}^2 = \sigma_{\alpha}^2/D$.

$$
\boxed{\widetilde{\sigma}^2_{\alpha+1} = \widetilde{\sigma}^2_{\alpha} + 1 - 2\phi_{\alpha}\sqrt{\widetilde{\sigma}^2_{\alpha}}}, \qquad \widetilde{\sigma}^2_{\alpha} = \frac{\sigma^2_{\alpha}}{\sigma^2_1}, \quad \phi_{\alpha} = \frac{\langle (\mathbf{u}_{\alpha} - \mathbf{u}_{0})(\mathbf{u}_{\alpha} - \mathbf{u}_{\alpha+1}) \rangle}{\sqrt{\sigma^2_1 \sigma^2_{\alpha}}},
$$

where ϕ_{α} originates from three-body correlations. At $\alpha \to \infty$ (in 3D crystals) $\phi_{\infty} = 1/2\sqrt{\tilde{\sigma}_{\infty}^2}$ and can be find analytically, as:

$$
\sigma_1^2=\frac{2T}{mN}\sum_{\mathbf{q},j}\frac{1}{\omega_j^2(\mathbf{q})}[1-\cos{(\mathbf{q}\cdot\mathbf{r}_1)}],\quad \sigma_\infty^2=\frac{2T}{mN}\sum_{\mathbf{q},j}\frac{1}{\omega_j^2(\mathbf{q})},
$$

where j denotes the phonon branch, and the summation is over all q and j . In 2D crystals, we obtained $\left[\frac{\partial^2 a}{\partial \alpha} \simeq 1 + A \ln n_\alpha\right]$, where the constant A is found analytically.

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. JCP 143, 0[345](#page-6-0)0[6 \(](#page-8-0)[2](#page-6-0)[01](#page-7-0)[5\)](#page-8-0)[.](#page-0-0)

 Ω

The results for 3D and 2D crystals

Shown are the normalized MSD, $\tilde{\sigma}_{\alpha}^2 = \sigma_{\alpha}^2/\sigma_1^2$ (a) and the correlation parameter, ϕ_{α} (b) versus the shortest-
graph length n_{α} for studied 3D (left column) and 2D (right column) crystals. S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. JCP 143, 034506 (20[15\)](#page-7-0). $2Q$

Functions $q(r)$ for "soft" Yukawa crystals

(a) – 3D FCC lattice at $\kappa = 1.4$, $\tau = 0.1$; (b) – 2D (triangular) lattice at $\kappa = 0.56$, $\tau = 0.5$. The symbols are the MD results, the solid and dashed lines are the theoretical results from the "exact" (anisotropic Gaussians for close particles) and simplified theories, respectively.

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. JCP 143, 0[345](#page-8-0)0[6 \(](#page-10-0)[2](#page-8-0)[01](#page-9-0)[5\)](#page-10-0)[.](#page-0-0)

S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 10 / 23

4 0 8

 $2Q$

The anharmonicity at short distances

The pair correlation function $q(r)$ at short distances, plotted for Yukawa BCC (a) and IPL12 FCC (b) crystals at $\kappa = 0.62$, $\tau = 0.9$. The first peak is clearly non-Gaussian for the shortrange interaction (b).

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. JCP 143, 034506 (2015)

From pair correlations to the Helmholtz free energy

Using found pair correlations functions $g(\mathbf{r})$, one can obtain the interaction energy,

$$
\frac{U_{\rm int}}{N} = \frac{n}{2} \int d{\bf r} \ g({\bf r}) \varphi(r)
$$

Then, once can perform thermodynamic integration to find the Helmholtz free energy

$$
F = F_{\rm ph} - T \int_0^T \bigg(\delta U_{\rm int} - \frac{3}{2} N T \bigg) \, \frac{dT}{T^2} + U_0 \Bigg], \qquad F_{\rm ph} = T \sum_{{\bf q}, j} \ln \bigg[2 \sinh \bigg(\frac{\hbar \omega_j({\bf q})}{2 T} \bigg) \bigg],
$$

where $\delta U_{\text{int}} = U_{\text{int}} - U_0$ is the temperature-dependent part of the internal energy, $U_0 = \frac{1}{2} \sum_{\alpha \neq \beta} \varphi(\mathbf{r}_{\alpha} - \mathbf{r}_{\beta})$ is the static interaction energy, and F_{ph} describes the contribution of phonons.

Also, the Helmholtz free energy $(F = E - TS)$ can be rewritten using the following expansion (Wallace, 1987),

$$
S = -\frac{N}{n} \int d\mathbf{p} \ f_N^{(1)}(\mathbf{p}) \ln h^3 f_N^{(1)}(\mathbf{p}) - \frac{n^2}{2} \int d\mathbf{r}_1 d\mathbf{r}_2 \ g_N^{(2)}(\mathbf{r}_1, \mathbf{r}_2) \ln g_N^{(2)}(\mathbf{r}_1, \mathbf{r}_2) -
$$

$$
-\frac{n^3}{3!} \int d\mathbf{r}_1 d\mathbf{r}_2 d\mathbf{r}_3 \ g_N^{(3)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) \ln \left[\frac{g_N^{(3)}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)}{g_N^{(2)}(\mathbf{r}_1, \mathbf{r}_2)g_N^{(2)}(\mathbf{r}_2, \mathbf{r}_3)g_N^{(2)}(\mathbf{r}_1, \mathbf{r}_3)} \right] + \dots
$$

D.C. Wallace. JCP 87, 2282 (1987) S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. JCP 143, 0[345](#page-10-0)0[6 \(](#page-12-0)[2](#page-10-0)[01](#page-11-0)[5\)](#page-12-0)

S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 12 / 23

つひひ

Thermodynamics of Yukawa and IPL crystals

Left panel: The relative error ε of the Helmholtz free energy (with respect to the MD results), calculated from the "exact" theory for 3D (a) and 2D (b) Yukawa crystals for different dimensionless temperatures τ and screening parameters κ .

Right panel: The relative error ε of the Helmholtz free energy for 3D (a) and 2D (b) IPL crystals with different exponents k.

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. JCP 143, 0[345](#page-11-0)0[6 \(](#page-13-0)[2](#page-11-0)[01](#page-12-0)[5\)](#page-13-0)

S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 13 / 23

 $2Q$

Thermodynamics of crystals

Left panel: The compressibility $Z = PV/NT$ of IPL crystals for different dimensionless temperatures τ and inverse exponents k^{-1} . The symbols and solid lines depict the MD and theoretical results. Right panel: The solid-solid (BCC-FCC) transition line for Yukawa crystals. The growing deviation from the results by Hamaguchi et al. is due to a combined effect of anharmonicity (at lower Γ) and hard-spherelike interactions (at larger κ).

Theoretical compressibility is obtained from the virial equation of state,

$$
Z = 1 - \frac{2\pi n}{3T} \int_0^\infty dr \ r^3 \varphi'(r) g(r).
$$

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. JCP 143, 034506 (2015)

 \leftarrow \Box

Account of phonon spectra anharmonicity

Pair correlation function for a 3D Yukawa FCC crystal ($\kappa = 4$, near melting line). The insets demonstrate that the use of the finite-temperature spectra substantially improves the analytical results at larger distances, while the results for the first peak become less accurate.

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. J. Phys.: Condens. Matter 28, 235401 (2016).

Interpolation method (IM)

The peak form is

$$
p_{\alpha}(\mathbf{r}) \propto \exp \left[-\frac{\varphi(\mathbf{r} + \mathbf{r}_{\alpha})}{k_{\mathrm{B}}T} - b_{\alpha}(\mathbf{e}_{\alpha} \cdot \mathbf{r}) - \frac{(\mathbf{e}_{\alpha} \cdot \mathbf{r})^2}{2a_{\parallel \alpha}^2} - \frac{\mathbf{r}^2 - (\mathbf{e}_{\alpha} \cdot \mathbf{r})^2}{2a_{\perp \alpha}^2} \right]
$$

The normalization constant and constants $a_{\parallel,\perp}^2$, b_{α} are found using the conditions

$$
\int d\mathbf{r} \ p_{\alpha}(\mathbf{r}) = 1, \qquad \int d\mathbf{r} \ \mathbf{r} p_{\alpha}(\mathbf{r}) = 0,
$$

$$
\int d\mathbf{r} \ (\mathbf{e}_{\alpha} \cdot \mathbf{r})^2 p_{\alpha}(\mathbf{r}) = \sigma_{\parallel \alpha}^2, \quad \int d\mathbf{r} \ [\mathbf{r}^2 - (\mathbf{e}_{\alpha} \cdot \mathbf{r})^2] p_{\alpha}(\mathbf{r}) = (D - 1)\sigma_{\perp \alpha}^2,
$$

where for close particles (with $n_{\alpha} \leq 4$) the MSDs can be calculated using the finite-temperature phonon spectra $\omega(\mathbf{q}, T)$:

$$
\sigma_{\parallel \alpha}^2 = \frac{2k_{\rm B}T}{mN} \sum_{\mathbf{q},j} \frac{(\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\mathbf{q}})^2}{\omega_j^2(\mathbf{q}, T)} [1 - \cos(\mathbf{q} \cdot \mathbf{r}_{\alpha})],
$$

$$
\sigma_{\perp \alpha}^2 = \frac{2k_{\rm B}T}{mN} \sum_{\mathbf{q},j} \frac{1 - (\mathbf{e}_{\alpha} \cdot \mathbf{e}_{\mathbf{q}})^2}{(D - 1)\omega_j^2(\mathbf{q}, T)} [1 - \cos(\mathbf{q} \cdot \mathbf{r}_{\alpha})].
$$

For $n_{\alpha} > 4$ we use the SG method described before.

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. J. Phys.: Co[nde](#page-14-0)[ns.](#page-16-0)[Ma](#page-15-0)[tt](#page-16-0)[er](#page-0-0) [28](#page-22-0), [23](#page-0-0)[540](#page-22-0)[1 \(](#page-0-0)[201](#page-22-0)6). S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 16 / 23

The results: pair correlations in 3D crystals

Pair correlation function for a 3D Yukawa (a) and IPL12 (b) FCC crystal with the screening parameter $\kappa = 4$ and dimensionless temperature (relatively the melting) $\tau = 0.9$. The respective insets show a zoom on the first correlation peak. IM calculations (red lines, include the lattice discreteness effect) demonstrate an excellent agreement with MD results (blue symbols).

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. J. Phys.: Condens. Matter 28, 235401 (2016).

Phase diagram of Yukawa crystal found by IM

Phase diagram of a 3D Yukawa system in the plane spanned by the coupling parameter Γ and screening parameter κ . The black dashed and red solid lines show "semi-analytic" results, obtained for the crystalline phases with the SG and IM approaches, respectively. The blue symbols are our MD results.

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. J. Phys.: Co[nde](#page-16-0)[ns.](#page-18-0)[Ma](#page-17-0)[tt](#page-18-0)[er](#page-0-0) [28](#page-22-0), [23](#page-0-0)[540](#page-22-0)[1 \(](#page-0-0)[201](#page-22-0)6).

The results: pair correlations in 2D crystals

The blue symbols are MD results, the red solid lines show IM calculations.

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. J. Phys.: Condens. Matter 28, 235401 (2016).

 \leftarrow

Pseudo-hard-sphere crystal

Pair correlation function for a 3D FCC (a) and 2D (b) crystal with PHS interactions at $N\lambda^D/V = 1$. The blue symbols are MD results, the red solid lines show IM calculations. The insets demonstrate that the IM approach yields accurate results, even for strongly non-Gaussian first peaks.

The pseudo-hard-sphere (PHS) potential:

$$
\varphi_{\rm PHS} = \begin{cases} 50\epsilon \left(\frac{50}{49}\right)^{49} \left[\left(\frac{\lambda}{r}\right)^{50} - \left(\frac{\lambda}{r}\right)^{49} \right] + \epsilon, & r \le \frac{50}{49} \lambda; \\ 0, & r > \frac{50}{49} \lambda. \end{cases} \epsilon = 2k_{\rm B}T/3
$$

S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev. J. Phys.: Condens. Matter 28, 235401 (2016).

4 0 8

 Ω

Melting – Ornstein-Zernike – Shortest-Graph (OZ - SG) theory

Using Ornstein-Zernike theory for fluid and SG method for solid, one can construct theory quite accurate estimation of melting line.

Melting line calculated using OZ-SG theory for fluid and solid, respectively. One can see that the result strongly depends on the closure relation used in OZ theory.

The result. — For given interaction potential and finite-temperature phonon spectra, pair correlations are described precisely by proposed IM approach.

Papers about the shortest-graph and interpolation method are

- \bullet S.O. Yurchenko // The Journal of Chemical Physics 140, 134502 (2014).
- S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev // The Journal of Chemical Physics 143, 034506 (2015).
- S.O. Yurchenko, N.P. Kryuchkov, A.V. Ivlev // Journal of Physics: Condensed Matter 28, 235401 (2016).

Related problems for future studies:

- \bullet Existence of phonon-like excitations in hard-sphere-like systems. Can phonon spectra be calculated using the proposed IM method ?
- \bullet Quasi-crystalline approach "crystals" with vanishing correlations $(\phi_{\infty} \to 0)$ at large distances. Can fluids be described by quasi-crystalline approaches (under the Frenkel's line) ?
- Predicting theory of melting. Can we consider the structure of fluid near the melting line ?

重

Thank you for your attention !

Laboratory "Terahertz technologies" <teratech.ru>

TEPACEPLIORAS Лаборатория Публикации Сотрудники Блог Контакты **TEXHMKA**

Физика конденсированного состояния

Физика изиденсированного состояния - богатейшая область современной физики, взяжая не только с фундаментальной, но и с приотадной точки звения Исследования закономерностей поведения конденсированных сред являют собой основу для технологий управления свойствани веществ, технологий создания новых материалов, а также для создания элементной базы нового поколения в приборостроении

Оптические сильно-коррелированные системы и методология спектроскопических исследований

Развитие технологий управления светон - активники задача современной физики и техники. В последнее время бальшое внимание в этом направлении Поведение фотонов в таких средах с дальними корреляциями принципиально отличается от обычных однородной сред, что приводит и целому комплексу новых полежей: запрещенным роним, предпознани света и т.д.

ТГц изображающие системы и взаимодействие излучения со структурированными средами

испальзоваться для систем безопасиости жизнедеятельности, о бномедицинских приложенийх, для технологическага и эксплуатационного контроля полеменная конструкций. Для создания также систем необходимо знать особенности даспроставнения TTu излучения в дазагник соедах, в г.н. предпина VEGENDOVERING

S.O. Yurchenko (TeraTech Lab) [Bauman MSTU](#page-0-0) September 16-26, 2016 23 / 23

4 0 8 1

つのへ