

ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ДАВЛЕНИЙ им. Л.Ф.ВЕРЕЩАГИНА Российской Академии Наук

XV Конференция (Школа) молодых ученых ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА И ВЫСОКИХ ДАВЛЕНИЙ пансионат МГУ "Буревестник" (Сочи, Вишневка)

Фазовые переходы флюид-флюид при высоких температурах

Саитов И.М., Норман Г.Э.

19 сентября 2016

Outline 1. APPROACH

2. VALIDATION OF THE APPROACH

2.1. Reflectivity from sharp wave front 2.2. Reflectivity from broadened shock wave front 2.3. Brewster angle 2.4. Conductivity 2.5. Plasma frequency

3. APPLICATION TO PHASE TRANSITIONS

3.1. Conductivity
3.2. Density of electronic states
3.3. Plasma frequency
3.4. Pair correlation function
3.5. Specific volume
3.6. Metastable states

1. APPROACH

2. <u>VALIDATION</u> OF THE APPROACH

2.1. Reflectivity from sharp shock wave front

Reflectivity from sharp shock wave front

Calculation parameters

$\lambda = 1064 \ nm$

$\lambda = 694, 532 \ nm$

ρ, <i>g/cm</i> ³	Т, К
0.51	30050
0.97	29570
1.46	30260
1.98	29810
2.7	29250
3.84	28810

ρ, <i>g/cm</i> ³	т, К
0.53	32900
1.1	33100
1.6	33120
2.2	32090
2.8	32020
3.4	31040

Motivation: shocked xenon plasma reflectivity

[1] V.B. Mintsev, Yu.B. Zaporogets, Contrib. Plasma Phys. 29, 493 (1989).
[2] H. Reinholz, G. Röpke, A. Wierling, V. Mintsev, V. Gryaznov, Contrib. Plasma Phys. 43, 3 (2003)
[3] M.P. Desjarlais, Contrib. Plasma Phys. 45, 300 (2005).

[1] V. B. Mintsev, Yu. B. Zaporogets, Contrib. Plasma Phys. **29**, 493 (1989).

[2] G. Norman, I. Saitov,V. Stegailov, P. Zhilyaev,Phys. Rev. E **91**, 023105 (2015).

Polarized reflectivity

2.2 Polarized reflectivity $\rho = 2.8 g / cm^3 \lambda = 532 nm$ $\rho = 2.8 g / cm^3 \lambda = 694 nm$ 0.8 0.8 ¢ ⁴44. 0.6 0.6 99 R 0.4 0.4 R P 0.2 0.2ф Þ ¢ φ , deg φ , deg 0 $\mathbf{0}$

80 90

10

0

20

30

40

50 60

70 80

90

40 50 60 70

20

10

0

30

2.2. Reflectivity from <u>broadened</u> shock wave front

Reflectivity from broadened shock wave front

$$\mathcal{E}(z,\lambda) = \begin{cases} 1, & z < 0 \\ 1 + \left[\mathcal{E}_{L}^{DFT}(\lambda) - 1 \right] \cdot (z/h), & 0 \le z < h \\ \mathcal{E}_{L}^{DFT}(\lambda), & z \ge h \end{cases} \text{ broadened front} \text{ Plasma} \\ E''(z) + \frac{4\pi^{2}}{\lambda^{2}} \mathcal{E}(z,\lambda) E(z) = 0 \\ E(h) = \exp\left(\frac{2\pi i}{\lambda} \sqrt{\mathcal{E}(h,\lambda)h}\right) & \lambda \\ E'(h) = \frac{2\pi i}{\lambda} \sqrt{\mathcal{E}(h,\lambda)} \cdot E(h) & \lambda \end{cases}$$

$$R = \left| \frac{2\pi i E(0) - \lambda E'(0)}{2\pi i E(0) + \lambda E'(0)} \right|^{2} \qquad 0 \qquad h$$

Z.

Normal reflectivity from broadened shock wave front

Optimal width of the wave front h, nm

Experiment (**red stars**): Yu. B. Zaporozhets, V. B. Mintsev, V. K. Gryaznov, V. E. Fortov, H. Reinholz, T. Raitza, G. Röpke, J. Phys.: Con. Ser. **653** 012110 (2015)

Normal reflectivity from broadened shock wave front

Optimal widths of the wave front h, nm

Polarized reflectivity S - polarization $\frac{\partial^2 E(z,\varphi)}{\partial z^2} + \frac{4\pi^2}{\lambda^2} \Big[\varepsilon(z,\lambda) - \sin^2 \varphi \Big] E(z,\varphi) = 0$ $E(h) = \exp\left(\frac{2\pi i}{\lambda} \sqrt{\varepsilon(h,\lambda) - \sin^2 \varphi} \cdot h\right) R_s(\varphi) = \left|\frac{2\pi i E(0,\varphi) \sqrt{1 - \sin^2 \varphi} - \lambda E'(0,\varphi)}{2\pi i E(0,\varphi) \sqrt{1 - \sin^2 \varphi} + \lambda E'(0,\varphi)}\right|^2$ $E_z(h) = \frac{2\pi i}{\lambda} \sqrt{\varepsilon(h,\lambda) - \sin^2 \varphi} \cdot E(h)$

P - polarization

$$\frac{\partial^2 H(z,\varphi)}{\partial z^2} - \frac{\partial \ln(\varepsilon(z,\lambda))}{\partial z} \frac{\partial H(z,\varphi)}{\partial z} + \frac{4\pi^2}{\lambda^2} \Big[\varepsilon(z,\lambda) - \sin^2 \varphi \Big] H(z,\varphi) = 0$$
$$H(h) = \exp\left(\frac{2\pi i}{\lambda} \sqrt{\varepsilon(h,\lambda) - \sin^2 \varphi} \cdot h\right) R_p(\varphi) = \left|\frac{2\pi i H(0,\varphi) \sqrt{1 - \sin^2 \varphi} - \lambda H_z(0,\varphi)}{2\pi i H(0,\varphi) \sqrt{1 - \sin^2 \varphi} + \lambda H_z(0,\varphi)}\right|^2$$
$$H_z(h) = \frac{2\pi i}{\lambda} \sqrt{\varepsilon(h,\lambda) - \sin^2 \varphi} \cdot H(h)$$

Polarized reflectivity

Polarized reflectivity

 $h = 100 \, nm$

2.3. Brewster angle

 $R_p^{\min} = R_p(\varphi_B)$

Drude theory.

2.4. Conductivity

2.4. Conductivity

[1] H. Reinholz, G. Röpke, A. Wierling, V. Mintsev, and V. Gryaznov, Contrib. Plasma Phys. 43, 3 (2003)
[2] G. Norman, I. Saitov, V. Stegailov, P. Zhilyaev, Phys. Rev. E 91, 023105 (2015)

2.5. Plasma frequency

2.5. Plasma frequency

Xenon

[1] G.Norman, I.Saitov, V.Stegailov, P.Zhilyaev, Phys. Rev. E 91, 023105 (2015) [2] V.B. Mintsev, Yu.B. Zaporogets, Contrib. Plasma Phys. 29, 493 (1989).

Выводы I.

В рамках теории функционала плотности предложен подход для самосогласованного описания оптических и электронных свойств разогретого плотного вещества

1. Применение выражения для продольного тензора диэлектрической проницаемости в рамках теории функционала плотности заметно улучшает согласие с экспериментом.

2. Применены поправки к расчету коэффициента отражения, учитывающие неоднородность профиля плотности на границе разогретого плотного вещества.

3. Проведен расчет коэффициента отражения как для нормального падения лазерного излучения, так и для случая падения под углом.

 Предложен метод расчета плазменной частоты при высоких температурах с использованием правила сумм. Подход позволяет напрямую связать результаты расчета плазменной частоты и коэффициента отражения.

3. APPLICATION TO PHASE TRANSITIONS

3.1. Conductivity

$$\sigma^{(1)}(\omega) = \omega \varepsilon^{(2)}(\omega) / 4\pi$$

3.2 Electronic density of states

3.3. Plasma frequency

$$\mathcal{E} = \mathcal{E}^{(1)} + i \cdot \mathcal{E}^{(2)}$$
Longitudinal expression
Kramers – Kronig transformation
DFT +
Molecular dynamics
Non-Local potentials

(a) $g(r_{max1})$ 0 $g(r_{min1})$ 5 10 С 700 t DB 1000 ο 3.4. Pair correlation 1 function 1500 (b) d_{H_2} g 0 10 4000 $_{_{\rm H_2^+}}$, Δ g F 1 0.6 0.8 0.4 1 ρ [g/cm³]

3.6 Metastable states

Выводы.

Фазовые переходы первого рода в жидком селене и водороде рассматриваются в рамках самосогласованного подхода для описания оптических и электронных свойств. Обнаружены:

1) скачки электропроводности и плазменной частоты в плотном разогретом водороде в области фазового перехода.

 закрытие щели между связанными и свободными состояниями в узком диапазоне плотностей в жидком селене и водороде.

3) заметное изменение структуры в водороде; при фазовом переходе происходит ионизация

 $H_2 = H_2^+ + e$

4) скачок плотности и области метастабильности на изотермах 1000 и 1500К в водороде.

Работа поддержана грантом РНФ 14-19-01295

Publications

 Norman G., Saitov I., Stegailov V., Zhilyaev P. Atomistic Modelling and Simulation of Warm Dense Matter. Conductivity and Reflectivity // Contrib. Plasma Phys. 53, No. 4-5, 300 – 310 (2013)

2. Norman G., Saitov I., Stegailov V., Zhilyaev P. Ab initio calculation of shocked xenon reflectivity // Phys. Rev. E **91**, 023105 (2015)

3. Norman G., Saitov I., Stegailov V. First-Principles Calculation of the Reflectance of Shock Compressed Xenon // J. Exp. Theor. Phys. **120**, No. 5, 894 – 904 (2015)

4. Norman G., Saitov I., Stegailov V. Plasma-Plasma and Liquid-Liquid First-Order Phase Transitions // Contrib. Plasma Phys. **55**, No. 2-3, 215 – 221 (2015)

5. Norman G., Saitov I. Brewster angle of shock-compressed xenon plasmas //

J. Phys.: Conf. Ser., 653, 012111 (2015)

6. Saitov I. Density functional theory for dielectric properties of warm dense matter // Mol. Phys. **114**, No. 3-4, 446 – 452 (2016)

Convergence (summary)

in number of k-points in the Brillouin zone

in number of particles in the supercell

in frequency range

in number of ionic configurations

Relative error is ~ 5% - 30% depending on density

Dependence of reflectivity of shocked xenon on density $\lambda = 1064 nm$

Calculation parameters

$\lambda = 1064 \ nm$

$\lambda = 694, 532 \ nm$

ρ, <i>g/c</i> 1	т, К
0.51	30050
0.97	29570
1.46	30260
1.98	29810
2.7	29250
3.84	28810

ρ, <i>g/c</i>	т, К
0.53	32900
1.1	33100
1.6	33120
2.2	32090
2.8	32020
3.4	31040

Plasma frequency of liquid selenium at ρ=5g/cm³

Dependence of plasma frequency on density in the liquid selenium

Dependence of charge density in plasma of shocked xenon on concentration of neutral atoms

Сходимость по интервалу интегрирования

 $\lambda = 1064 nm$

Сходимость по числу частиц

Зависимость коэффициента отражения s- и p-поляризованных компонент излучения от угла падения.

Саитов И.М. Диэлектрические свойства разогретого плотного вещества (Warm Dense Matter)

$$\varepsilon^{(2)}(\omega) = \frac{4\pi^2 e^2}{\Omega} \lim_{|\mathbf{q}| \to 0} \frac{1}{|\mathbf{q}|^2} \sum_{i,j,\mathbf{k}} 2w_{\mathbf{k}} \cdot \left[f\left(\mathbf{E}_{i,\mathbf{k}+\mathbf{q}}\right) - f\left(\mathbf{E}_{j,\mathbf{k}}\right) \right] \left| \left\langle \Psi_{i,\mathbf{k}+\mathbf{e}_{\alpha}q} \left| \Psi_{j,\mathbf{k}} \right\rangle \right|^2 \cdot \delta\left(\mathbf{E}_{i,\mathbf{k}+\mathbf{q}} - \mathbf{E}_{j,\mathbf{k}} - \hbar\omega\right) \right|$$

$$\varepsilon^{(1)}(\omega) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\varepsilon^{(2)}(\omega')\omega'}{\omega'^{2} - (\omega - i\eta)^{2}} d\omega'$$

Electronic density of states