Флуктуации плотности в однокомпонентных жидкостях

А. В. Мокшин

Казанский (Приволжский) федеральный университет, Институт физики, кафедра вычислительной физики

XV Конференция молодых ученых "Проблемы физики твердого тела и высоких давлений", 16-26 сентября 2016 г.

Содержание

- 1. Динамический структурный фактор;
- 2. Теоретические модели;
- 3. Сопоставление с экспериментальными данными.

Структура

Статический структурный фактор S(k):

$$S(\mathbf{k}) = 1 + \rho \int \exp(-i\mathbf{k} \cdot \mathbf{r})[g(\mathbf{r}) - 1]d\mathbf{r},$$

 $\rho = \frac{N}{V}$ - количественная плотность,

 $g(\mathbf{r})$ - функция радиального распределения частиц.

В случае неупорядоченной системы имеем

$$S(k) = 1 + \frac{4\pi\rho}{k} \int_{0}^{\infty} r[g(r) - 1]\sin(kr)dr =$$

= $1 - \frac{4\pi\rho}{k} \frac{d}{dk} \int_{0}^{\infty} [g(r) - 1]\cos(kr)dr.$

Fig. is from K. Binder, W. Kob, Glassy materials & disordered solids, 2005

σ - эффективный размер частицы.

T. Scopigno et al., Rev. Mod. Phys. 77, 881 (2005).

Динамика

Динамический структурный фактор S(k, w)

ТГц частотная область

Динамика

$$F(k,t) = \frac{\left< \delta \rho_k^*(0) \delta \rho_k(t) \right>}{\left< |\delta \rho_k(0)|^2 \right>}$$

временная корреляционная функция (ВКФ),

где
$$S(k) = \langle | \delta \rho_k(0) |^2 \rangle = \int S(k, \omega) d\omega,$$

-

$$\delta \rho_k = \sum_{i=1}^N e^{i\vec{k}\cdot\vec{r_i}} = \sum \int d\vec{r} e^{i\vec{k}\cdot\vec{r}} \rho(\vec{r})$$
 - динамическая переменная,

локальная плотность

Puc. D. R. Reichman, P. Charbonneau, cond-mat (2005).

Динамика Характеризация спектров

Динамика Характеризация спектров

1. Нормировка экспериментальных спектров $S(k,\omega)$ [отн. ед. \leftrightarrow абс. ед.]; $S(k) = \int S(k,\omega) \, d\omega$ and $\omega_{un}^{(1)}(k) = \int \omega^2 S(k,\omega) \, d\omega$

2. Автокоррелятор плотности:

$$F(k,t) = F(k,0) + \left| \dot{F}(k,t) \right|_{t=0} \cdot t + \left| \ddot{F}(k,t) \right|_{t=0} \cdot \frac{t^2}{2} + \dots$$

3. Частотные параметры: $[\Omega_n^2(k)] = 1c^{-2}$

$$\begin{split} \Omega_{1}^{2}(k) &= \frac{k_{B}T}{m} \frac{k^{2}}{S(k)}, \quad \Omega_{2}^{2}(k) = 3\Omega_{1}^{2}(k)S(k) + \frac{N}{mV} \int drg(r)[1 - \cos(kr)] \nabla_{l}^{2}u(r) - \Omega_{1}^{2}(k), \\ \Omega_{3}^{2}(k) &= \frac{\omega^{(6)}(k) - \Omega_{1}^{2}(k)[\Omega_{1}^{2}(k) + \Omega_{2}^{2}(k)]}{\Omega_{1}^{2}(k)\Omega_{2}^{2}(k)}, \quad \omega^{(6)}(k) = 15 \left(\frac{k_{B}T}{m}\right)^{2} k^{4} + \frac{k_{B}T}{m^{2}} k^{2} \frac{N}{V} \int drg(r) \nabla_{l}^{2}u(r) + \\ &+ 6 \frac{k_{B}T}{m^{2}} k \frac{N}{V} \int drg(r) \nabla_{l}^{3}u(r) \sin(kr) + 2 \frac{N}{m^{2}V} \int drg(r)[\nabla \nabla_{l}u(r)]^{2}[1 - \cos(kr)] + \\ &+ \left(\frac{N}{mV}\right)^{2} \int drdr' g_{3}(r, r')[1 + \cos(k(r - r')) - \cos(kr - kr')](\nabla \nabla_{l}u(r))(\nabla \nabla_{l}'u(r')), \\ \Omega_{4}^{2}(k) &= \frac{\omega^{(8)}(k) - \Omega_{1}^{2}(k)[(\Omega_{1}^{2}(k) + \Omega_{2}^{2}(k))^{3} + 2\Omega_{2}^{2}(k)\Omega_{3}^{2}(k)(\Omega_{1}^{2}(k) + \Omega_{2}^{2}(k)) + \Omega_{2}^{2}(k)\Omega_{3}^{4}(k)]}{\Omega_{1}^{2}(k)\Omega_{2}^{2}(k)\Omega_{3}^{2}(k)}. \end{split}$$

Динамический структурный фактор жидкого калия при *T*=354 К (T_м=336 К)

A.V. Mokshin, R.M. Yulemtyev, P. Hänggi, J. Chem. Phys. 121, 7341 (2004)

Гидродинамический предел

$$\begin{aligned} \frac{\rho(Q,t)}{\rho(Q)} &= \left[\left(\frac{\gamma-1}{\gamma} \right) e^{-D_T Q^2 t} + \frac{1}{\gamma} e^{-\Gamma Q^2 t} \cos c_s Q t \right] \\ \frac{S(Q,\omega)}{S(Q)} &= \frac{1}{2\pi} \left[\left(\frac{\gamma-1}{\gamma} \right) \frac{2D_T Q^2}{\omega^2 + (D_T Q^2)^2} \right], \\ &+ \frac{1}{\gamma} \left[\frac{\Gamma Q^2}{(\omega + c_s Q)^2 + (\Gamma Q^2)^2} \\ &+ \frac{\Gamma Q^2}{(\omega - c_s Q)^2 + (\Gamma Q^2)^2} \right], \end{aligned}$$

F /

Rayleight-Mandelshtam-Brillouin triplet

$$\gamma = \frac{c_P}{c_V}, \quad D_T = \frac{\kappa}{\rho m C_P},$$
$$\Gamma = \frac{1}{2\rho m} \left[\frac{4}{3} \eta_s + \eta_B + \frac{(\gamma - 1)\kappa}{c_P} \right].$$

п.

Динамика (при высоких *k*)

Высокие *k* - переход к режиму свободнодвижущейся частицы

Динамический структурный фактор: $S(k,\omega) = \sqrt{\frac{m}{2\pi k_{P}Tk^{2}}} \exp\left(-\frac{m\omega^{2}}{2k_{P}Tk^{2}}\right)$

Функция рассеяния:
$$F(k,t) = \exp\left(-\frac{k_B T k^2 t^2}{2m}\right)$$

$$\Omega_1^2(k) = \frac{k_B T}{m} k^2, \quad \Omega_2^2(k) = 2\Omega_1^2(k), \quad \Omega_3^2(k) = 3\Omega_1^2(k), \quad \dots, \quad \Omega_n^2(k) = n\Omega_1^2(k).$$
Параметр негауссовости:

$$\alpha_v = \frac{v}{v+1} \frac{\Omega_{v+1}^2}{\Omega_v^2} - 1;$$

$$\alpha_v = 0 \quad - \quad \text{гау ссова релаксация,}$$

$$\alpha_v \neq 0 \quad - \quad \text{эффекты негау ссовости.}$$

IXS in liquid potassium above T_m

T. Scopigno et al., Rev. Mod. Phys. 77, 881 (2005).

FIG. 21. Dispersion curves (maxima of the current correlation function) measured by INS [open circles (Bove *et al.*, 2003), stars (Cabrillo *et al.*, 2002)] and IXS [full circles (Monaco *et al.*, 2004)].

$$G_{J}(k,t) = \frac{(J^{L}(k,0), J^{L}(k,t))}{(J^{L}(k,0), J^{L}(k,0))},$$

$$S(k)\Delta_{1}(k)\tilde{G}_{J}(k,\omega) = \omega^{2}S(k,\omega).$$

Динамика (при конечных *k*)
Обобщенная гидродинамика
(k-,
$$\omega$$
-зависимые коэффициенты переноса)

$$\vec{F}(k,t) + \Omega_1^2(k)F(k,t) + \Omega_1^2(k)\Omega_2^2(k)\int_0^t M_2(k,t-\tau)\dot{F}(k,t)d\tau = 0, \quad (\text{GLE})$$

$$S(k,\omega) = \frac{S(k)}{\pi} \frac{\Omega_1^2(k)\Omega_2^2(k)\Omega_2^2(k)\widetilde{M}_2(k,\omega)}{[\omega^2 - \Omega_1^2(k) - \omega\Omega_2^2(k)\widetilde{M}_2(k,\omega)]^2 + [\omega\Omega_2^2(k)\widetilde{M}_2(k,\omega)]^2},$$
где $\Omega_1^2(k) = \frac{k_BT}{m} \frac{k^2}{S(k)}, \quad \underline{M}_2(k,t)$ - ВКФ локальной энергии, функция памяти
 $\Omega_2^2(k) = 3\Omega_1^2(k)S(k) + \frac{N}{mV}\int drg(r)[1 - \cos(kr)]\nabla_l^2 u(r) - \Omega_1^2(k),$

Treatment of IXS & INS experiment is to fit $M_L(k,t)$ (4 fitting parameters)

Treatment of IXS & INS experiment is to fit $M_L(k,t)$ (4 fitting parameters)

T. Scopigno et al., Rev. Mod. Phys. 77, 881 (2005). 16

1. McGreevy-Mitchell's model:

$$\begin{split} F(k,t) &= \frac{S(k)}{\pi} \left\{ \frac{\gamma(k) - 1}{\gamma(k)} \exp\left(-\frac{\sqrt{t^2 + \tau_1(k)^2} - \tau_1(k)}{\tau_2(k)} \right) + \\ &+ \frac{1}{\gamma(k)} \exp\left(-\frac{\sqrt{t^2 + \tau_3(k)^2} - \tau_3(k)}{\tau_4(k)} \right) \cos(v_s k t) \right\}, \\ S(k,\omega) &= \frac{S(k)}{\pi} \left\{ \frac{\gamma(k) - 1}{\gamma(k)} \exp\left(\frac{\tau_1(k)}{\tau_2(k)} \right) \frac{\tau_1(k)^2}{\tau_2(k)} \frac{K_1(x)}{x} + \\ &+ \frac{1}{2\gamma(k)} \exp\left(\frac{\tau_3(k)}{\tau_4(k)} \right) \frac{\tau_3(k)^2}{\tau_4(k)} \left[\frac{K_1(y)}{y} + \frac{K_1(z)}{z} \right] \right\}, \end{split}$$

где $x = \tau_1(k)\sqrt{\omega^2 + 1/\tau_2(k)^2}$ и $y, z = \tau_3(k)\sqrt{(\omega \pm v_s k)^2 + 1/\tau_4(k)^2};$ и $K_1(\ldots)$ представляет функцию Бесселя второго рода.

2. Singh-Tankeshwar's model:

$$\begin{split} F(k,t) &= S(k) \left[\frac{\gamma - 1}{\gamma} \operatorname{sech}(t/\tau_1) + \frac{1}{\gamma} \operatorname{sech}(t/\tau_2) \cos(\omega_0 t) \right], \\ S(k,\omega) &= S(k) \frac{a\tau_1}{2} \operatorname{sech}\left(\frac{\pi \omega \tau_1}{2}\right) \\ &+ S(k) \frac{(1-a)\tau_2}{4} \left[\operatorname{sech}\left(\frac{\pi(\omega + \omega_0)\tau_2}{2}\right) \right] \\ &+ \operatorname{sech}\left(\frac{\pi(\omega - \omega_0)\tau_2}{2}\right) \right], \qquad a, \tau_1, \tau_2 \neq \omega_0 - \operatorname{ectb}$$
 модельные параметры.

1. Набор ортогональных переменных

$$\begin{split} A_{0}(k) &= \sum_{j=1}^{N} e^{i\vec{k}\cdot\vec{r}_{j}}, \qquad \qquad \frac{dA_{0}(t)}{dt} = i[\hat{H}, A_{0}(t)] = i\hat{L}A_{0}(t), \\ \text{Ортогонализация Грама - Шмидта :} \\ \mathbf{A} &= \{A_{0}, A_{1}, A_{2}, ..., A_{\nu}, ...\}, \quad (A_{\nu}, A_{\mu}) = (A_{\nu}, A_{\nu})\delta_{\nu,\mu}, \quad \nu, \mu = 0, 1, 2, ... \\ A_{\nu+1} &= i\hat{L}A_{\nu} + \Omega_{\nu}^{2}A_{\nu-1}, \quad A_{-1} = 0, \quad A_{0} \equiv A, \quad \Delta_{0} = 1, \\ \Omega_{\nu}^{2} &= \frac{\left\langle |A_{\nu}|^{2} \right\rangle}{\left\langle |A_{\nu-1}|^{2} \right\rangle} \end{split}$$

2. Принцип Н.Н. Боголюбова о сокращенном описании

(конечный набор динамических переменных);

Флуктуации плотности, флуктуации импульса, флуктуации энергии и потока энергии (соответствие гидродинамике);

 $\mathbf{A}(k) = \{A_0(k), \ A_1(k), \ A_2(k), \ A_3(k), \ A_4(k)\}$

$$\begin{split} S(k,\omega) &= \frac{S(k)}{\pi} F[\Omega_1^2(k), \Omega_2^2(k), ..., \Omega_j^2(k); \omega]. \\ S(k,\omega) &= \frac{S(k)}{2\pi} \frac{\Omega_1^2(k)\Omega_2^2(k)\Omega_3^2(k)}{\Omega_4^2(k) - \Omega_3^2(k)} \frac{[4\Omega_4^2(k) - \omega^2]^{1/2}}{\omega^6 + \mathcal{A}_1(k)\omega^4 + \mathcal{A}_2(k)\omega^2 + \mathcal{A}_3(k)}, \\ \mathcal{A}_1(k) &= \frac{\Omega_3^4(k) - \Omega_2^2(k)[2\Omega_4^2(k) - \Omega_3^2(k)]}{\Omega_4^2(k) - \Omega_3^2(k)} - 2\Omega_1^2(k), \\ \mathcal{A}_2(k) &= \frac{\Omega_2^4(k)\Omega_4^2(k) - 2\Omega_1^2(k)\Omega_3^4(k) + \Omega_1^2(k)\Omega_2^2(k)[2\Omega_4^2(k) - \Omega_3^2(k)]}{\Omega_4^2(k) - \Omega_3^2(k)} + \Omega_1^4(k), \\ \mathcal{A}_3(k) &= \frac{\Omega_1^4(k)\Omega_3^4(k)}{\Omega_4^2(k) - \Omega_3^2(k)}. \\ \Omega_1^2(k) &= \frac{k_BT}{m} \frac{k^2}{S(k)}, \quad \Omega_2^2(k) = 3\Omega_1^2(k)S(k) + \frac{N}{mV} \int drg(r)[1 - \cos(kr)] \nabla_l^2 u(r) - \Omega_1^2(k), \end{split}$$

$$\Omega_{3}^{2}(k) = \frac{\omega^{(6)}(k) - \Omega_{1}^{2}(k)[\Omega_{1}^{2}(k) + \Omega_{2}^{2}(k)]}{\Omega_{1}^{2}(k)\Omega_{2}^{2}(k)}, \quad \omega^{(6)}(k) = 15\left(\frac{k_{B}T}{m}\right)^{2}k^{4} + \frac{k_{B}T}{m^{2}}k^{2}\frac{N}{V}\int drg(r)\nabla_{l}^{2}u(r) + 6\frac{k_{B}T}{m^{2}}k\frac{N}{V}\int drg(r)\nabla_{l}^{3}u(r)\sin(kr) + 2\frac{N}{m^{2}V}\int drg(r)[\nabla\nabla_{l}u(r)]^{2}[1 - \cos(kr)] + \left(\frac{N}{mV}\right)^{2}\int drdr'g_{3}(r,r')[1 + \cos(k(r-r')) - \cos(kr-kr')](\nabla\nabla_{l}u(r))(\nabla'\nabla_{l}'u(r')).$$

Уравнение дисперсии:

$$s^{3} + \frac{2\Omega_{4}(k)}{Q(k)}s^{2} + \left[\Omega_{1}^{2}(k) + \frac{\Omega_{2}^{2}(k)(1+Q(k))}{Q(k)}\right]s + \frac{2\Omega_{4}(k)\Omega_{1}^{2}(k)}{Q(k)} = 0,$$
$$Q(k) = 2\frac{\Omega_{4}^{2}(k)}{\Omega_{3}^{2}(k)} - 1,$$

С приближенными решениями [R.D. Mountain, Rev. Mod. Phys. 38, 419 (1966)]:

$$s_{1,2}(k) = \pm i v_s k - \Gamma k^2,$$

$$s_3(k) = -2 \frac{\Omega_4(k)}{\gamma \mathcal{Q}(k)}.$$

$$v_s = \sqrt{\gamma} v_T, \quad \lim_{k \to 0} \Delta_1(k) = v_T^2 k^2,$$
$$\Gamma = \frac{\gamma - 1}{\gamma} \frac{\Omega_4(k)}{\mathcal{Q}(k)},$$
$$\gamma = 1 + \frac{\Omega_2^2(k)[1 + \mathcal{Q}(k)]}{\Omega_1^2(k)\mathcal{Q}(k)},$$

21 PRE (2001); JETP Letters (2002)

Динамический структурный фактор жидкого лития при *Т*=475К $(T_{melt} = 453.7 \text{K})$

IXS – T. Scopigno et al., 2001

Динамический структурный фактор жидкого натрия при T=390К ($T_{melt}=371$ К)

IXS – T. Scopigno et al., 2001

A.V. Mokshin, R.M. Yulmetyev, T. Scopigno, P. Hänggi, J. Phys.: Condens. Matter **15**, 2235 (2003)

Динамический структурный фактор жидкого алюминия при температуре *T*=973 К

IXS – T. Scopigno et al., 2003

Figure 1. Main plots: the scattering intensity $I(k, \omega)$ of liquid aluminium at temperature T = 973 K for different wavenumbers. The solid lines present the molecular dynamics results convoluted with the experimental resolution and involving the detailed balance condition; open circles with error bars are the IXS data of [19]. Insets: the difference between molecular dynamics results and interpolated experimental data at the fixed k, i.e., $I_{\rm MD}(k, \omega) - I_{\rm IXS}(k, \omega)$, in the units 10^{-3} ps.

k (nm ⁻¹)	$\delta_1(k)$	$\delta_2(k)$	$\delta_3(k)$	$\delta_4(k)$
4.2	2.008	1.357	3.787	0.935
5.4	2.043	1.484	2.839	0.926
7.8	2.105	1.344	2.455	0.915
9.0	2.466	1.301	2.310	0.934
10.2	2.890	1.376	1.926	0.964
11.4	2.866	1.504	1.680	0.920
12.6	2.581	1.465	1.723	0.920
13.8	2.519	1.239	1.929	0.957

J. Phys.: Condens. Matter 19 (2007) 046209

Сопоставление с обобщенной гидродинамикой, вязкоупругой моделью и др.

Разложение $M_2(k,t)$:

$$\begin{cases} \widetilde{M}_{2}(k,s) = [s + \Omega_{3}^{2}(k)\widetilde{M}_{3}(k,s)^{-1}] = \frac{s + \Omega_{4}^{2}(k)\widetilde{M}_{3}(k,s)}{s^{2} + \Omega_{4}^{2}(k)\widetilde{M}_{3}(k,s)s + \Omega_{3}^{2}(k)}, \quad (a) \\ \widetilde{M}_{3}(k,s) = \frac{-s + \sqrt{s^{2} + 4\Omega_{4}^{2}(k)}}{2\Omega_{4}^{2}(k)}. \qquad (b) \\ \widetilde{M}_{3}(k,s) = \frac{-s + \sqrt{s^{2} + 4\Omega_{4}^{2}(k)}}{2\Omega_{4}^{2}(k)}. \qquad (b) \\ \widetilde{L}_{2} = \frac{s^{2}}{4\Omega_{4}^{2}}, \quad |\xi| < 1, \quad |\Omega_{4}^{2} \sim 10^{29}s^{-2}, \quad \omega < 10^{15}s^{-1} \quad (t > 10^{-15}s) \\ (b) \rightarrow \widetilde{M}_{3}(s) = -\frac{s}{2\Omega_{4}^{2}} + \frac{1}{\Omega_{4}} + \frac{\xi}{2\Omega_{4}} - \frac{\xi^{2}}{8\Omega_{4}} + \dots \qquad (k - \phi u \kappa c u \rho o B a H o) \\ \widetilde{M}_{2}(k,s) = \sum_{j} \frac{A_{j}(k)}{s + \tau_{j}^{-1}(k)}, \qquad A_{j}(k), \quad \tau_{j}^{-1}(k) = f[\Omega_{3}^{2}(k), \Omega_{4}^{2}(k)], \\ M_{2}(k,t) = \sum_{j} A_{j}(k)e^{-t/\tau_{j}(k)}. \qquad (b) \end{cases}$$

A.V. Mokshin, R.M. Yulmetyev, P. Hanggi, J. Chem. Phys. 121, 7341 (2004)

25

• Спасибо за внимание!

$$\frac{d}{dt}A_{\nu}(t) = -\Omega_{\nu+1}^{2}\int_{0}^{t}A_{\nu}(\tau)\frac{\langle A_{\nu+1}(0)^{*}A_{\nu+1}(t-\tau)\rangle}{\langle |A_{\nu+1}(0)|^{2}\rangle}d\tau + A_{\nu+1}(t)$$

функция памяти (v+1)-го порядка
$$\frac{d}{dt}\varphi_{\nu}(t) = -\Omega_{\nu+1}^{2}\int_{0}^{t}\varphi_{\nu+1}(t-\tau)\varphi_{\nu}(\tau)d\tau, \quad \nu = 0, 1, 2, ...,$$

 $\Omega_{1}^{2} = \omega^{(2)},$ $\Omega_{2}^{2} = \frac{\omega^{(4)}}{\omega^{(2)}} - \omega^{(2)},$ $\Omega_{3}^{2} = \frac{\omega^{(6)}\omega^{(2)} - \omega^{(4)^{2}}}{\omega^{(4)}\omega^{(2)} - \omega^{(2)^{3}}};$ $\omega^{(2p)} = (-i)^{p} \frac{d^{p}\varphi(t)}{dt^{p}}\Big|_{t=0}, \quad p = 1, 2, ...$

$$\widehat{\varphi}_{\nu}(s) = rac{1}{s + \Omega_{\nu+1}^2 \widehat{\varphi}_{\nu+1}(s)}.$$
 $LT[\varphi(t)] = \widetilde{\varphi}(s) = \int_0^\infty dt \ e^{-st} \varphi(t)$
преобразование Лапласа