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Three-dimensional MgB2-type superconductivity in hole-doped diamond.
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Università di Roma “La Sapienza”, Piazzale A. Moro 2, 00185Roma, Italy
2Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

(Dated: April 21, 2004)

We substantiate by calculations that the recently discovered superconductivity below 4 K in 3% boron-doped
diamond is caused by electron-phonon coupling of the same type as in MgB2, albeit in 3 dimensions. Holes at
the top of the zone-centered, degenerateσ-bonding valence band couple strongly to the optical bond-stretching
modes. The increase from 2 to 3 dimensions reduces the mode-softening crucial forTc reaching 40 K in MgB2.
Even if diamond had the samebarecoupling constant as MgB2, which could be achieved with 10% doping,Tc

would only be 25 K. Superconductivity above 1 K in Si (Ge) requires hole-doping beyond 5% (10%).

PACS numbers: 74.70.-b,74.70.Ad,74.25.Kc

Recently, superconductivity belowTc ∼4 K was reported in
diamond doped withx ∼3% boron, that is, with∼0.03 holes
per carbon atom [1]. Such high hole-doping levels can be
achieved due to the small size of boron. It had previously been
observed that the prominent Raman line caused by the zone-
center optical phonons at 1332 cm−1 downshifts and broadens
significantly upon heavy boron doping [2]. In this Letter we
shall make plausible that the superconductivity in hole-doped
diamond is due to the coupling of the holes to the optical zone-
center phonons, a mechanism similar to the one causing high-
temperature superconductivity in MgB2, but without some of
its interesting features. We shall also estimate transition tem-
peratures for hole-doped Si and Ge.

The discovery [3] of superconductivity below 40 K in
MgB2, a binary compound isostructural and isoelectronic
with graphite, came as a surprise for the scientific community.
By now, it is well understood what the mechanism is and why
MgB2 is special [4, 5, 6, 7, 8]: In contrast to other known
sp2-bonded superconductors, such as intercalated graphite,
alkali doped fullerides, and organic superconductors whose
charge carriers are exclusivelyπ-electrons, MgB2 has holes
at the top of the bondingσ-bands at the zone center. These
holes, on two narrow Fermi cylinders with radii∼1/5 of the
Brillouin-zone radius, couple strongly(λ ∼ 1) to the two op-
tical bond-stretching modes withq ≤ 2kF ≪ kBZ , giving
rise to a strong 2-dimensional Kohn anomaly in the phonon
spectrum. This strong coupling between a few zone-center
holes and optical phonons is what drives the high-temperature
superconductivity in MgB2. Experience shows [5], and for
parabolic bands with2kF ≪ kBZ it can be proved [9], that
the coupling constant is given by the Hopfield expression,

λ =
ND2

Mω2
, (1)

whereN is the density of states (DOS) per spin at the Fermi
level of theσ holes. Moreover,±Du is the splitting of the
degenerate top of theσ-band by the displacementeu of a
frozen, optical zone-center phonon with normalized eigenvec-
tor e and energyω. The optical phonons are softened by the
interaction with the holes,ω2 ∼ ω2

0/ (1 + 2λ) whenq < 2kF ,

and that significantly enhancesλ and Tc ∼ ω exp (−1/λ).
This softening is somewhat weakened by anharmonicity [10].
The DOS is independent of doping because theσ-band is 2-
dimensional. As a consequence, a decrease in the number of
holes, e.g. by carbon-doping, should not causeλ to decrease,
except through the anharmonic hardening ofω caused by the
decrease ofEF [11]. In stoichiometric MgB2 there are as
manyπ-electrons asσ-holes (0.09 per B), but the former cou-
ple far less to phonons than the latter, and since there seemsto
be very little impurity scattering between theσ- andπ-bands,
MgB2 is the first superconductor which clearly exhibits mul-
tiple gaps below a commonTc [7, 8, 10, 12].

Instead of havingπ-bands and three 2-dimensional bond-
ing σ-bands, sp3-bonded semiconductors have four 3-
dimensional bondingσ-bands. The top of this valence band
is three-fold degenerate with symmetryT2g, and so are the
zone-center optical phonon modes. The wavefunctions are
those linear combinations of the bond orbitals which have
px, py, andpz symmetry, and the phonon modes are those
which have two of the four bonds stretched and the two oth-
ers contracted, i.e. they have the same symmetry as the holes.
Like in MgB2, σ-holes with smallkF should therefore couple
strongly, and for smallkF exclusively, to the optical bond-
stretching modes, with the main differences being that in 3
dimensions the Kohn anomaly is weaker and the DOS in-
creases with hole doping likekF , the radius of the average
Fermi sphere. Since there are 3 bands and two carbon atoms
per cell, (kF /kBZ)

3
= x/3. For x=0.03,kF /kBZ is 0.22,

which is like in MgB2. Due to the lack of a metallicπ-band,
diamond becomes an insulator oncex is below 1-2 per cent.
We shall now substantiate this scenario for the observed su-
perconductivity in hole-doped diamond by providing quan-
titative details, and we shall also consider the possibility of
superconductivity in hole-doped Si and Ge. In particular, we
shall present results of density-functional (LDA) calculations
and estimateTc using Eliashberg theory.

We modelled boron-doped diamond by a virtual crystal of
carbon nuclei with charge6 − x. The valence bands were
calculated with the scalar-relativistic full-potential LMTO
method [13], and the phonon dispersions and the electron-
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FIG. 1: LDA band-structure of diamond withx=0.1 holes/C (full
lines). In the presence of a frozen optical zone-center phonon with
amplitudeu=0.05Å the bands split (dotted lines).

phonon spectral functionα2F were calculated with the linear-
response method [13]. Effects of anharmonicity were consid-
ered in a second step. We used a triple-κ spd LMTO basis set
and represented the charge densities and potentials by spher-
ical harmonics withl ≤ 6 inside non-overlapping muffin-tin
spheres and by plane waves with energies less than 400 Ry be-
tween the spheres. The resulting band structure for undoped
diamond agrees with those of earlier LDA calculations. Due
to the smallness ofkF , we needed to use a finek-mesh chosen
as a1/323 sublattice in reciprocal space.α2F is evaluated as
a weighted sum over linewidths of individual phonons, and for
this a fine yet affordableq-mesh is needed. It was chosen as
a 1/83 sublattice in reciprocal space. Theλ-values obtained
herewith are accurate whenx & 0.05, whereas Eq. (1) is more
accurate for smaller dopings.

The LDA is known to reproduce the lattice constants of
semiconductors to within a per cent [14]. For hole-doped di-
amond we checked that our calculations reproduced the slight
lattice expansion measured as a function of doping up to 3%
[1]. Since, even for 10% doping, we calculated an increase
of the lattice constant by less than a per cent, we used the ex-
perimental lattice parameters for theundoped materials in all
subsequent calculations .

In Fig. 1 we show the top of the valence-band structure cal-
culated for 10% hole-doped diamond. For this unrealistically
heavy doping,N reaches 75% of theσ-band DOS in MgB2.
The electronic parameters may be found together with those
for MgB2 in the first columns of the table. Due to the devia-
tion from parabolicity of the heavy hole band seen in Fig. 1,
N decreases somewhat faster thanx1/3. Fig. 2 exhibits the
Fermi surface sheet for this heavy hole band at 5% doping.
Due to the non-parabolicity, this sheet deviates from a sphere.
As is well known, the LDA gap is too small and this leads
to a slight underestimate of the valence-band masses and the
DOS. Nevertheless, properties derived from the total energy,
like phonon energies, are quite accurate.

For the displacementeu of a frozen, optical zone-center
phonon, the top of the valence band is deformed as shown in
Fig. 1: For smallk there are two identical bands, split in en-
ergy by±Du, and a band which atk=0 does not move with

FIG. 2: The largest, heavy-hole pocket for diamond doped with 0.05
holes/C.

respect to the Fermi level. The value ofD given in the table
is seen to be nearly twice as large as in MgB2. For pure dia-
mond it agrees with the accepted value [15], and it is seen to
decrease slightly with doping.

In Fig. 3 we show the phonon dispersions calculated in
the harmonic approximation for undoped and hole-doped dia-
mond. The dispersions for pure diamond, including the slight
upturn of the uppermost mode when moving away from the
zone center, are well reproduced [16], and for the frequency
1332 cm−1 of the optical zone-center modes we calculate
ω0 =1292 cm−1. Previous LDA calculations [17] obtained
similar results. In the presence of hole-doping, the calculated
dispersions of the optical modes clearly exhibit softeningnear
the zone center and a 3-dimensional Kohn anomaly around
q = 2kF .

The softening of the zone-center phonons is(2/3)λ instead
of λ, as in the case of MgB2. This is most easily seen by con-
sidering a frozen phonon calculation and Fig. 1: The adiabatic
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FIG. 3: Phonon dispersions calculated with the linear-response
method for diamond withx = 0, 1, 5, and 10 % hole doping.
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redistribution of(1/3)2NDu electrons from the upper third
to the lower third of the deformed valence band decreases the
energy of each electron byDu, and therefore perturbs the po-
tential energy of the harmonic oscillator by− (1/3)2ND2u2.
As a consequence,(1/2)Mω2 = (1/2)Mω2

0−(1/3) 2ND2,
and by use of Eq. (1) we finally get:ω2 = ω2

0/(1 + 2 2

3
λ). In

MgB2 no part of theσ-band is passive in the screening of the
phonon, so the factor 2/3 is missing. The value ofλ deduced
from the frequencies,ω and ω0 ≡ ω(x=0), of the optical
zone-center modes calculated by linear response is given in
the table(λω). This λω-value is seen to agree well with the
valueλD obtained by use of Eq. (1). In order to separate the
materials and dimensional dependencies ofλ, we express it
in terms of abarecoupling constant,λ0, and an enhancement
due to the phonon softening:

λ0 ≡
ND2

Mω2
0

, λ =
λ0

1 − 2 2

3
λ0

,
ω2

ω2
0

= 1 − 2
2

3
λ0. (2)

The enhancement is weaker in 3 dimensions than in 2, where
the reduction factor 2/3 is missing. As for the materials de-
pendence, theλ0-values given in the table first of all show that
10% doped diamond has the sameλ0 ∼ 1/3 as MgB2: The
bare force constant,Mω2

0, is 0.49 times its value in MgB2, N
is 0.75, andD is 1.65. Due to the difference in dimensional-
ity, λ ∼ 1/3

1−4/9
= 0.6 in doped diamond, butλ ∼ 1/3

1−2/3
= 1

in MgB2. With decreasing doping in diamond,N decreases
roughly likex1/3, D increases slightly, andMω2

0 is constant.
As a consequence, for 3% doping,λ0 is only 0.21 andλ is
0.30.

We can calculate the electron-phonon spectral function and
λ = 2

∫

ω−1α2F (ω) dω numerically by sampling over all
phonon branches and energy bands. The result shown in Fig. 4
confirms that only the optical phonons interact with the holes:
α2F vanishes for phonon frequencies below that of the opti-
cal zone-center modes, then jumps to a maximum, and finally
falls. The decay occurs more slowly than in MgB2 due to the
increase of dimensionality. Theλ-values(λ) obtained from
this calculation again agree well with those obtained from
Eq. (1) and from the phonon softening.

In MgB2 the role of anharmonicity of the optical phonon
modes withq < 2kF has been stressed [10]; it hardens
the phonon by about 15% and thus decreasesλ from 1.0 to
λa =0.78, as given in the table. This anharmonicity appears
in frozen phonon calculations (see Fig. 1), because once the
displacementu exceedsEF /D, the lower band is full so that
the screening is lost [11]. In the expression for the perturba-
tion of the potential energy of the oscillator,u2 should now
be substituted by(|u| − EF /D)2 θ (EF /D − |u|), provided
that we simplify the DOS shape by a square. It has been
shown that the most important anharmonic contribution toTc

is the decrease of the first excitation energy [18]. This is sim-
ply (1/3) 2ND2t2 [1 − erf (EF /Dt)] , by first-order pertur-
bation theory, and wheret ≡

√

~/Mω is the classical turning
point in the ground state. Introducing again Eq. (1) we obtain
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FIG. 4: The phonon density of states,F (ω), and Eliashberg function,
α2F (ω), calculated by linear response considering all electrons and
phonons.

the result:

λa

λ
=

ω2

ω2
a

=
1

1 + 2 (2/3)λ [1 − erf (EF /Dt)]
. (3)

For MgB2 the assumption of a squareN (E) is good, but due
to the missing factor 2/3 and the presence of theπ-band,(2/3)
in Eq. (3) should be substituted by[1−Nπ/ (N + 2Nπ)]. For
hole-doped diamond,N(E) has square-root shape, and this
we crudely take into account by substitutingEF in Eq. (3)
by E′

F = (2/3)EF . In the table we have included the ratio
E′

F /Dt ≡ a as well as the results forλa. We see that the
effect of anharmonicity is important in MgB2 and noticeable
in hole-doped diamond.

For this type of superconductivity, which is characterized

TABLE I: N is in states/eV/spin/fu.D is in eV/Å. ω is in cm−1.
λ0 is the bare electron-phonon coupling constant defined in Eq.(2).
λD andλω are estimates of the coupling constant as obtained from
respectively Eq. (1) and the softening ofω. λ is obtained from the
numerical linear-response calculation and includes all phonons and
σ-electrons; for MgB2 it is λσσ [19]. a ≡ E′

F /Dt. λa is λ corrected
for anharmonicity. Tc is obtained from Eq. (4) usingλa, ωa, and
µ∗=0.1.

N D ω λ0 λD λω λ a λa Tc

MgB2 0.15 12.4 536 0.33 1.01 — 1.02 0.9 0.7845

C 0.00 21.6 1292 0 0 0 0 0.0 0 0
3%C 0.07 21.1 1077 0.21 0.30 0.33 0.30 0.7 0.270.2
5%C 0.08 20.8 1027 0.25 0.37 0.44 0.36 0.9 0.332

10%C 0.11 20.4 957 0.32 0.57 0.62 0.56 1.3 0.5425

Si 0.00 6.8 510 0 0 0 0 0.0 0 0
5%Si 0.17 6.3 453 0.13 0.16 0.20 0.30 1.4 0.300.3

10%Si 0.24 6.1 438 0.17 0.22 0.27 0.40 2.0 0.403

Ge 0.00 5.8 317 0 0 0 0 0.0 0 0
10%Ge 0.20 4.4 282 0.08 0.09 0.20 0.32 5.1 0.320.4
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by an Eliashberg function with the shape exhibited in Fig. 4,
and which we can idealize by aδ-function at the frequencyω
of the optical zone-boundary phonon, solution of the Eliash-
berg equations yields with high accuracy:

Tc = ω exp

(

−1
λ

1+λ − µ∗

)

. (4)

This is McMillan’s expression with all the numerical factors
obtained by fitting toF (ω) of niobium set equal to unity. For
the cases considered in the present paper, it does not make
much difference whether one uses McMillan’s factors or unity
inside the exponential, but it is important that the prefactor is
ω, rather than〈ωln〉 /1.2.

We can finally estimateTc from Eq. (4) with the values for
λa given in the table andωa from Eq. (3). For the Coulomb
pseudopotential, the standard valueµ∗=0.1 was used in all
cases. For MgB2 we neglected theπ-bands. Considering the
uncertainties in our calculation ofλ andω, the uncertainty of
µ∗, and the experimental estimation of the doping level, we
do find critical temperatures in good agreement with present
experimental knowledge. We therefore believe to have sub-
stantiated our claim that the superconductivity in hole-doped
diamond is of MgB2-type, but in three dimensions.

We repeated our calculations for hole-doped Si and Ge, and
include those results in the table for whichEF largely ex-
ceeds the spin-orbit splitting, which we neglected. Whereas
hole-doped C shows superconductivity above 1 K for doping
levels presently obtainable, Si and Ge seem to need twice as
high doping levels. The main reason is that the deformation
potentials in Si and Ge are about four times smaller than in
C, which is too little to take the advantage of having twice as
large DOS and three times smaller force-constants. There is
also a qualitative difference to diamond: For heavily dopedSi
and Ge, the holes not only couple to the optical, but also to the
acoustic phonons. This is the reason whyλ exceedsλD ∼ λω .

In conclusion, we have shown that the recently discov-
ered superconductivity in hole-doped diamond below 4K is
of MgB2-type, but in three dimensions. This means that the
mechanism is coupling of a few holes at top of theσ-bonding
valence band to the optical zone-center phonons. The increase
from 2 to 3 dimensions limits the strong softening of the opti-
cal modes mainly responsible for the highTc in MgB2. On the
other hand, the deformation potentials in diamond are twice
stronger than in MgB2. Kelvin-range superconductivity in Si
and Ge would require hole-doping levels of 5-10%. Finally,

we have obtained simple analytical expressions for MgB2-
type superconductivity.

We are grateful to O. Dolgov for drawing our attention to
this problem and to M. Cardona, G. B. Bachelet, E. Cappel-
luti, and L. Pietronero for many interesting discussions.
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